COL4A1 and fetal vascular origins of schizencephaly

Roha Khalid, MD, Pradeep Krishnan, MD, Kathleen Andres, NP, Susan Blaser, MD, Steven Miller, MD, Mahendranath Moharir, MBBS, and Nomazulu Dlamini, MBBS, PhD

Correspondence
Dr. Dlamini
nomazulu.dlamini@sickkids.ca

Classically described by Yakovlev and Wadsworth1 in 1946, schizencephaly is a rare congenital brain malformation characterized by clefts of the cerebral mantle extending from the pial surface to lateral ventricles lined by heterotopic gray matter. Observed associations between schizencephaly and in utero infections, trauma, fetal exposure to teratogens, and death of a monozygotic twin support the hypothesis that schizencephaly is the consequence of fetal vascular disruption during the late first or early secondary trimester of pregnancy.2

Recent reports have identified COL4A1 gene mutations in as many as 50% of patients with schizencephaly.3 Collagen α1 (IV) is a member of the type IV collagen family that comprises the major structural component of basement membranes that line the endothelial layer of blood vessels.4 First described by Gould et al.5 in 2005 as a cause of perinatal cerebral hemorrhage in mice, COL4A1 mutations in humans can present with a wide range of phenotypes with disease onset as early as in the fetal period.6

We report a rare case demonstrating the sequential development of schizencephaly on MRI from an in utero acute focal vascular event.

Case report

A 27-year-old primigravida mother had abnormal echogenicity detected in the right anterior parietal region of the brain on routine fetal ultrasound at 19 weeks’ gestation. Fetal MRI at 21 weeks’ gestation demonstrated acute diffusion restriction in the same region in a right middle cerebral artery territory distribution suggestive of ischemic infarction (figure). In addition, susceptibility foci were noted in the right frontotemporal lobes and basal ganglia representing hemorrhagic transformation of infarct. Follow-up MRI at 35 weeks’ gestation identified focal volume loss in the region of previously documented ischemic injury with a parenchymal cleft extending to the ventricular margin, consistent with open lip schizencephaly. TORCH and thrombophilia screens were normal. MRI at 4 weeks postnatal age showed parenchymal volume loss, porencephaly, and schizencephaly in affected regions. The combination of ischemic and hemorrhagic brain injury prompted COL4A1 mutation analysis, which revealed a de novo heterozygous mutation in intron 9 of the COL4A1 (α1) gene. At 6 months of age, the infant had developed clinical microcephaly and left hemiparesis. Subsequent investigation revealed no structural ophthalmologic, cardiac, or renal abnormalities.

Discussion

The development of the human cortex is a dynamic but staged process whereby stem cells differentiate into neuroblasts or glial cells. Neuroblasts migrate from the periventricular germinial matrix towards the cortex to form the cortical plate, and the cortex becomes organized via synaptogenesis and apoptosis. Neuronal migration occurs in an overlapping fashion from approximately the 6th–24th gestational week.6

It is theorized that in cases of schizencephaly, a vascular insult prior to the neuronal migration period damages radial glial cells, which normally act as a guide for migrating neuroblasts leading
to a wedge-shaped defect of the cerebral mantle with heterotopic gray matter lining the lips of the resulting cleft.7

The neuroimaging in our patient demonstrates a clear timeline by which fetal brain injury at 19 weeks’ gestation developed into open-lip schizencephaly in the same anatomical region by 35 weeks’ gestation, lending support to the theory that schizencephaly is likely secondary to a pathologic vascular mechanism. Interestingly, our case suggests that it may not be mandatory for the inciting vascular event to occur before neuronal migration begins in order to lead to schizencephaly, but rather at any point during this critical yet dynamic period of development.

The altered neurobiological substrate and capillary fragility associated with the COL4A1 mutation likely played a role in the causation of stroke, subsequent schizencephaly, and porencephaly. Therefore, we propose that genetic testing for COL4A1 gene mutations be considered in patients with schizencephaly given the broad and currently undefined clinical phenotype with these mutations as well as the implications for future management and outcome.

Furthermore, it remains unclear whether schizencephaly is solely the consequence of an acute vascular insult at a critical time in an otherwise normally developing brain, a pathologic endpoint of developmentally appropriate processes on a vulnerable neurobiological substrate, or a combination of both.

Systematic MRI follow-up of fetal ischemic injury and informed genetic testing in large longitudinal cohorts is required to add to our understanding of this condition.

Author contributions
Roha Khalid: analysis and interpretation of data, critical revision of manuscript for intellectual content. Pradeep Krishnan: analysis and interpretation of data, critical revision of manuscript for intellectual content.
intellectual content. Kathleen Andres: analysis and interpretation of data, critical revision of manuscript for intellectual content. Susan Blaser: analysis and interpretation of data, critical revision of manuscript for intellectual content. Steven Miller: critical revision of manuscript for intellectual content. Mahendranath Moharir: critical revision of manuscript for intellectual content. Nomazulu Dlamini: study concept and design, analysis and interpretation of data, study supervision, critical revision of manuscript for intellectual content.

Study funding
No targeted funding reported.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References

Neurology in the Spotlight at 2018 Annual Meeting in Los Angeles
Registration is now open for the totally flexible, dynamic 2018 Annual Meeting. We’ll be shining the spotlight on neurology and what you need to excel in your career. Look for the latest science, education, and networking you won’t find anywhere else when the biggest names in neurology and neuroscience convene in Los Angeles April 21 through 27. Learn more and register now at AAN.com/view/AM18.

Sign Up for the AAN’s Axon Registry
The AAN encourages its US members in small group and solo practices to show their interest in participating in the Axon Registry® by signing up today.

Use the Axon Registry to:
• Simplify reporting requirements under MACRA’s Quality Payment Program and avoid penalties while reducing your administrative burden
• Meet your MOC Part IV requirements
• Choose from 22 AAN neurology-specific quality measures that fit your practice
• Use data to understand your practice and identify where improvements can be made to patient care
• Demonstrate your value to payers when negotiating reimbursement
• Enjoy multi-year, fee-free access when you sign the agreements and integrate your EHR with the registry

Learn more at AAN.com/view/Axon and send your questions to registry@aan.com.
COL4A1 and fetal vascular origins of schizencephaly
Roha Khalid, Pradeep Krishnan, Kathleen Andres, et al.
Neurology 2018;90;232-234 Published Online before print December 27, 2017
DOI 10.1212/WNL.0000000000004890

This information is current as of December 27, 2017

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://n.neurology.org/content/90/5/232.full</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 7 articles, 1 of which you can access for free at: http://n.neurology.org/content/90/5/232.full#ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>Cortical dysplasia http://n.neurology.org/cgi/collection/cortical_dysplasia</td>
</tr>
<tr>
<td></td>
<td>Intracerebral hemorrhage http://n.neurology.org/cgi/collection/intracerebral_hemorrhage</td>
</tr>
<tr>
<td></td>
<td>MRI http://n.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td></td>
<td>Neonatal http://n.neurology.org/cgi/collection/neonatal</td>
</tr>
<tr>
<td></td>
<td>Pediatric stroke; see Cerebrovascular Disease/ Childhood stroke http://n.neurology.org/cgi/collection/pediatric_stroke_see_cerebrovascular_disease-childhood_stroke</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/about/about_the_journal#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://n.neurology.org/subscribers/advertise</td>
</tr>
</tbody>
</table>